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1. Introduction

A non-zero value of different QCD condensates leads to non-perturbative power corrections

to propagators. The one being intensively studied during last years is the A2-condensate

in Landau gauge [1 – 6] (extended to a gauge-invariant non-local operator, [7]), that is

responsible for ∼ 1/q2 corrections to the gluonic propagator compared to perturbation

theory. In this paper we investigate the rôle of such corrections in the ghost propagator,

and present a method that allows to test numerically that power corrections of ∼ 1/q2

type really exist using only ghost and gluon lattice propagators, and ordinary perturbation

theory.

The study of the asymptotic behaviour of the ghost propagator in Landau gauge in

the SU(3) quenched lattice gauge theory with Wilson action was the object of a previous

work [8]. The lattice definition and the algorithm for the inversion of the Faddeev-Popov

operator, as well as the procedure of eliminating specific lattice artifacts, are exposed

there. A perturbative analysis, up to four-loop order ([9, 10]), has been accomplished

over the whole available momentum window [2GeV ↔ 6GeV]. However, a lesson we re-

tained after a careful study of the gluon propagator performed in the past [11, 12, 2] is

that non-perturbative low-order power corrections and high-order perturbative logarithms

give comparable contributions over momentum windows of such a width. Both appear to

be hardly distinguishable, and thus - because of the narrowness of the fit window - the

power-correction contribution could lead to some enhancement of the ΛQCD parameter.

Conversely, higher perturbative orders could borrow something to the non-perturbative
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condensate fitted from the power correction term. So, the quality of the fits (the value of

χ2/d.o.f) of lattice data is not a sufficient criterion when interpreting the results. A solu-

tion to the problem is to use several lattice data samples in order to increase the number of

points in the fit window. This presumably brings another bias: the rescaling of the lattice

data from different simulations (with different values of the ultraviolet(UV) cut-off i.e. the

lattice spacing a). Nevertheless, we have to assume anyhow that the dependence on UV

cut-off approximatively factorises 1 in order to fit lattice data to any continuum formula.

Such an assumption will be furthermore under control provided that, as it happens in

practice, our lattice data from different simulations match each other after rescaling.

In the present paper we will follow the approach presented in refs. [2, 3] and do a

fully consistent analysis of ghost and gluon propagators in the pure Yang-Mills theory

based on the OPE description of the non-perturbative power corrections in Landau gauge.

As far as our lattice correlation functions are computed in Landau gauge, the leading

non-perturbative contribution is expected to be attached to the v.e.v. of the local A2

operator. This condensate generates a 1/q2-correcting term, still sizeable for our considered

momenta, and that, as will be seen, gives identical power corrections to both gluon and

ghost propagators. This result allows to separate the dominant power-correction term from

the perturbative contribution, and suggests a new strategy for analysing the asymptotic

behaviour of ghost and gluon propagators, even in the case of a small fit window.

In the present letter we use this strategy to extract the ΛQCD-parameter from ghost

and gluon propagators.

2. The analytical inputs

The present section is devoted to briefly overview the analytical (perturbative and non-

perturbative) tools we have implemented to analyse our gluon and ghost lattice propaga-

tors.

2.1 Pure perturbation theory

In the so-called Momentum subtraction (MOM) schemes, the renormalisation conditions

are defined by setting some of the two- and three-point functions to their tree-level values

at the renormalisation point. Then, in Landau gauge,

lim
Λ→∞

d ln(Z3,MOM(p2 = µ2,Λ)

d ln µ2
= γ3,MOM(gMOM) (2.1)

where Λ is some regularisation parameter (a−1 if we specialise to lattice regularisation)

and 2

Z3,MOM(p2 = µ2,Λ) =
1

3
(
N2

C − 1
) · p2 · δab

(
δµν −

pµpν

p2

)
〈Ãa

µ(−p)Ãb
ν(p)〉 . (2.2)

1This is the case of any renormalisation scheme where one drops any regular term depending on the

cut-off away from renormalisation constants [13].
2In Euclidean space.
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A similar expression can be written for the ghost propagator renormalisation factor Z̃3.

Both anomalous dimensions for ghost and gluon propagators have been recently com-

puted [9] in the MS scheme. At four-loop order we have

d ln(Z3,MOM )

d ln µ2
=

13

2
hMS +

3727

24
h2

MS
+

(
2127823

288
−

9747

16
ζ3

)
h3

MS
+

+

(
3011547563

6912
−

18987543

256
ζ3 −

1431945

64
ζ5

)
h4

MS

d ln(Z̃3,MOM )

d ln µ2
=

9

4
hMS +

813

16
h2

MS
+

(
157303

64
−

5697

32
ζ3

)
h3

MS
+

+

(
219384137

1536
−

9207729

512
ζ3 −

221535

32
ζ5

)
h4

MS

(2.3)

where h = g2/(4π)2. However, the definition of a MOM scheme still needs the definition

of the MOM coupling constant. Once chosen a three-particle vertex, the polarisations

and momenta of the particles at the subtraction point, there is a standard procedure to

extract the vertex and to define the corresponding MOM coupling constant. This may

be performed in several ways. In fact, infinitely many MOM schemes can be defined. In

ref. [14], the three-loop perturbative substraction of all the three-vertices appearing in the

QCD Lagrangian for kinematical configurations with one vanishing momentum have been

performed. In particular, the three schemes defined by the subtraction of the transversal

part of the three-gluon vertex (M̃OMg) 3 and that of the ghost-gluon vertex with vanishing

gluon momentum (M̃OMc) and vanishing incoming ghost momentum (M̃OMc0) will be

used in the following. In Landau gauge and in the pure Yang-Mills case (nf = 0) one has

h
M̃OMg

=hMS +
70

3
h2

MS
+

(
51627

576
−

153

4
ζ3

)
h3

MS
+

+

(
304676635

6912
−

299961

64
ζ3 −

81825

64
ζ5

)
h4

MS

h
M̃OMc

=hMS +
223

12
h2

MS
+

(
918819

1296
−

351

8
ζ3

)
h3

MS
+

+

(
29551181

864
−

137199

32
ζ3 −

74295

64
ζ5

)
h4

MS

h
M̃OMc0

=hMS +
169

12
h2

MS
+

(
76063

144
−

153

4
ζ3

)
h3

MS
+

+

(
42074947

1728
−

35385

8
ζ3 −

66765

65
ζ5

)
h4

MS
.

(2.4)

Thus, inverting Eq. (2.4) and substituting in Eq. (2.3), we obtain the gluon and ghost

propagator anomalous dimensions in the three above-mentioned renormalisation schemes.

The knowledge of the β-function

β(h) =
d

d ln µ2
h = −

n∑

i=1

βi hi+2 + O
(
hn+3

)
, (2.5)

3It corresponds to M̃OMgg in [14].
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makes possible the perturbative integration of the three equations obtained from Eq. (2.3).

The integration and perturbative inversion of Eq. (2.5) at four-loop order gives an expres-

sion for the running coupling:

h(t) =
1

β0t

(
1 −

β1

β2
0

log(t)

t
+

β2
1

β4
0

1

t2

((
log(t) −

1

2

)2

+
β2β0

β2
1

−
5

4

))
+

+
1

(β0t)4

(
β3

2β0
+

1

2

(
β1

β0

)3 (
−2 log3(t) + 5 log2(t) +

(
4 − 6

β2β0

β2
1

)
log(t) − 1

))
,

(2.6)

where t = ln µ2

Λ2
QCD

. We omit the index specifying the renormalisation scheme both for h

and ΛQCD.

The last equation allows us to write the ghost and gluon propagators as functions of

the momentum. The numerical coefficients for the β-function in Eq. (2.5) are [15]:

β0 = 11, β1 = 102,

βM̃OMc0

2 = 3040.48, β
M̃OMg

2 = 2412.16, βM̃OMc

2 = 2952.73,

βM̃OMc0

3 = 100541, β
M̃OMg

3 = 84353.8, βM̃OMc

3 = 101484.

2.2 OPE power corrections for ghost and gluon propagators

The dominant OPE power correction for the gluon propagator has been calculated in

([2, 3]), and it has the form

Z3(q
2) = Z3,pert(q

2)

(
1 +

3

q2

g2
R〈A

2〉R
4(N2

C − 1)

)
. (2.7)

In this section we present the calculation of the analogous correction to the ghost propa-

gator. The leading power contribution to the ghost propagator

F ab(q2) =

∫
d4xeiq·x〈 T

(
ca(x)cb(0)

)
〉, (2.8)

as in refs. [2, 3] for gluon two- and three-point Green functions, can be computed using the

operator product expansion [16]:

T
(
ca(x)cb(0)

)
=

∑

t

(ct)
ab (x) Ot(0) (2.9)

where Ot is a local operator, regular when x → 0, and where the Wilson coefficient ct

contains the short-distance singularity. In fact, up to operators of dimension two, nothing

but 1 and : Aa
µAb

ν : contribute to Eq. (2.8) in Landau gauge 4. Then, applying (2.9) to

4Those operators with an odd number of fields (∂µA and ∂µc) cannot satisfy colour and Lorentz invariance

and do not contribute with a non-null non-perturbative expectation value, neither cc contributes because

of the particular tensorial structure of the ghost-gluon vertex
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(2.8), we obtain:

F ab(q2) = (c0)
ab(q2) + (c2)

abστ
st (q2)〈: As

σ(0)At
τ (0) :〉 + · · ·

= F ab
pert(q

2) + wab 〈A2〉

4(N2
C − 1)

+ · · · (2.10)

where

wab = (c2)
abστ
st δstgστ =

1

2
δstgστ

∫
d4xeiq·x 〈Ãt′

τ ′(0) T
(
cacb

)
Ãs′

σ′(0)〉connected

G(2)ss
′

σσ′G(2)tt
′

ττ ′

= 2 × , (2.11)

and the SVZ sum rule [17] is invoked to compute the Wilson coefficients. Thus, one should

compute the “sunset” diagram in the last line of Eq. (2.11), that couples the ghost prop-

agator to the gluon A2−condensate, to obtain the leading non-perturbative contribution

(the first Wilson coefficient trivially gives the perturbative propagator). Finally,

F ab(q2) = F ab
pert(q

2)

(
1 +

3

q2

g2
R〈A

2〉R
4(N2

C − 1)

)
+ O

(
g4, q−4

)
(2.12)

where the A2-condensate is renormalised, according to the MOM scheme definition, by

imposing the tree-level value to the Wilson coefficient at the renormalisation point, [2]. As

far as we do not include the effects of the anomalous dimension of the A2 operator (see

ref. [3]), we can factorise the perturbative ghost propagator. Then, doing the transverse

projection, one obtains the following expression for the ghost dressing function:

Z̃3(q
2) = Z̃3,pert(q

2)

(
1 +

3

q2

g2
R〈A

2〉R
4(N2

C − 1)

)
. (2.13)

We see that the multiplicative correction to the perturbative Z̃3,pert is identical to that

obtained in ref. [2] for the gluon propagator (Eq. (2.7)).

We do not know whether there is a deep reason for the equality of the Wilson coefficients

at one loop for the gluon and ghost propagators. Is it a consequence of the absence

of (gauge-dependant) 〈A2〉 contributions in gauge-invariant quantities? In principle, this

could be proven either by a direct calculation of some gauge-invariant quantity or by

analysing a Slavnov-Taylor identity [18] that relates the ghost and gluon propagators with

the three-gluon and the ghost-gluon vertices. In both cases one has to evaluate the 〈A2〉

corrections to these vertices, and this is a delicate question (because of soft external legs,

[19]). The understanding of the mechanism of compensation of diverse gauge-dependent

OPE contributions deserves a separate study, and we do not address this question in the

present paper.
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β Volume a−1 (GeV) Number of conf.

6.0 164 1.96 1000

6.0 244 1.96 500

6.2 244 2.75 500

6.4 324 3.66 250

Table 1: Run parameters of the exploited data ([8]).

3. Data Analysis

3.1 Lattice setup

The lattice data that we exploit in this letter were previously presented in ref. [8]. We

refer to this work for all the details on the lattice simulation (algorithms, action, Faddeev-

Popov operator inversion) and on the treatment of the lattice artifacts (extrapolation to the

continuum limit, etc). The parameters of the whole set of simulations used are described

in table 1.

Our strategy for the analysis will be, after rescaling and combining the data from each

particular simulation, to try global fits over a momentum window as large as possible.

As will be seen, after such a multiplicative rescaling, all the data match each other from

∼ 2 GeV to ∼ 6 GeV (cf. figure 1). For the sake of completeness, we have furthermore

performed an independent analysis (at fixed lattice spacing) for all simulations from table 1.

The results of this analysis are given in appendix A.

3.2 Extracting ΛQCD from lattice data

Given that at the leading order the non-perturbative power corrections factorise as in

Eq. (2.13) and are identical in the case of the ghost and gluon [2] propagators, our strategy

to extract ΛQCD is to fit the ratio

Z̃3(q
2,ΛR, 〈A2〉)

Z3(q2,ΛR), 〈A2〉)
=

Z̃3,pert(q
2,ΛR)

Z3,pert(q2,ΛR)
, (3.1)

to the ratio of three-loop perturbative formulae in scheme R obtained in section 2.1, and

then convert ΛR to ΛMS ([8]). It is interesting to notice that non-perturbative corrections

cancel out in this ratio even in the case nf 6= 0. The ΛQCD-parameter extracted from this

ratio is free from non-perturbative power corrections up to operators of dimension four,

while the dressing functions themselves are corrected by the dimension two A2−condensate.

In table. 2, the best-fit parameters for the three schemes are presented and we plot in

figure 1 the lattice data and the M̃OMg best-fit curve for the ratio in Eq. (3.1).

In figure 2a we show the evolution of the fitted parameter ΛMS when changing the order

of the perturbation theory used in the fitting formula. One can conclude from figure 2a

and appendix A that M̃OMg scheme at three loops gives the most stable results for ΛMS.

It can also be seen from the ratio of four to three loops contributions (see figure 2b) for the

– 6 –
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k (GeV)

0,19

0,2

0,21

0,22

0,23

0,24

Z
3,

gl
uo

n/Z
3,

gh
os

t

MOMg renormalization scheme

2 2.5 3 3.5 4

k
min 

(GeV)
250

260

270

280

290

300

310

Λ
M

S

MOMg renormalization scheme

(a) (b)

Figure 1: (a) Plot of the Z3(p
2)

eZ3(p2)
for the best fit parameter ΛMS = 269(5) MeV. (b) The determi-

nation of the optimal window fit (from 3 GeV to kmaxa ≤ π/2) results from the search for some

“plateau” of ΛMS when one changes the low bound of the fit window.

scheme Λ2 loops

MS
χ2/d.o.f Λ3 loops

MS
χ2/d.o.f Λ4 loops

MS
χ2/d.o.f

M̃OMg 324(6) 0.33 269(5) 0.34 282(6) 0.34

M̃OMc 351(6) 0.33 273(5) 0.34 291(6) 0.33

M̃OMc0 385(7) 0.33 281(5) 0.34 298(6) 0.33

Table 2: The best-fitted values of ΛMS for the three considered renormalisation schemes. As

discussed in the text, M̃OMg seems to be the one showing the best asymptotic behaviour.

perturbative expansion of log Z3,

ln(Z3) = r0 ln(hR) +
∑

i=1

rih
i
R , (3.2)

where the coefficients ri are to be computed from those in eqs. (2.3)–(2.7) and R stands

for any renormalisation scheme (R = M̃OMg in figure 2b). The same is done for log Z̃3.

According to our analysis, three loops seems to be the optimal order for asymptoticity.

Indeed, the values of Λ
MS

for the three considered renormalisation schemes practically

match each other at three loops. Finally,

ΛMS = 269(5)+12
−9 (3.3)

could be presented as the result for the fits of the ratio of dressing functions to perturbative

formulae, where we take into account the bias due to the choice of the fitting window (see

figure 1b and appendix A).

However, there are indications (appendix A and [8]) that our present systematic un-

certainty may be underestimated, and we prefer simply to quote ΛMS ≈ 270 MeV . This

value is considerably smaller than the value of ≈ 320 MeV obtained by independent fits of

– 7 –
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2 3 4
number of loops

270

300

330

360

390

420

450
 Λ

M
S 

 (
M

eV
)

ratio MOMg
ratio MOMc
ratio MOMc0
Gluon MOMg 
Ghost MOMg

3 3.5 4 4.5 5 5.5 6
k (GeV)

-0.1

-0.08

-0.06

-0.04

-0.02

0

(r
2 

h)/r
1

Gluon 
Ghost

3 3.5 4 4.5 5 5.5 6
k (GeV)

-10

-5

0

 (r
3 

h)/r
2

(a) (b)

Figure 2: (a) Evolution of the parameter ΛMS, extracted from fits of the ratio eq. (3.1) and prop-

agators alone (rhombus and star markers, extracted from table 7 of [8]) to perturbative formulae,

as function of the order of the perturbation theory. Only statistical error is quoted. (b) Ratio of

four-loop to three-loop contributions (and of three-loop to two-loops for the sake of comparison) for

the perturbative expansion of log Z3 and log Z̃3 (in M̃OMg) in eq. (3.2), plotted versus the momenta

inside our fitting window.

Z3 Z̃3

g2
R〈A

2〉 (GeV2) 2.7(4) 2.7(2)

Table 3: The best-fitted values of g2
R〈A

2〉 for M̃OMg obtained from fitting lattice data to a three-

loop perturbative formula + non-perturbative power correction with ΛMS = 270 MeV. We only

quote statistical errors.

dressing functions ([8]), and with fitting windows independently determined for each lat-

tice sample (see figure 2a). This argues in favour of presence of low-order non-perturbative

corrections to the ghost and gluon propagators.

3.3 Estimating the value of the 〈A2〉 gluon condensate

Knowing ΛMS we can fit ghost and gluon dressing functions using eqs. (2.7), (2.13). The

free parameter in this case is g2
R〈A

2〉. According to the theoretical argument given in

2.2, the results obtained from these fits have to be compatible. We have performed this

analysis for the rough value ΛMS ≈ 270 MeV, (see table 3). Indeed, we find that the

resulting values agree. It is worth to emphasise the meaning of this result: a fully self-

consistent description of gluon and ghost propagators computed from the same sample of

lattice configuration (same Λ
MS

and same 〈A2〉) is obtained.

The values of the gluon condensate presented in table 3 are smaller than those obtained

from the previous analysis of the gluon propagator [2]. The reason for this is the larger value

of ΛMS we have found. Had we taken ΛMS ' 240 MeV, we would obtain similar results to

those previously presented. Of course, this discrepancy have to be included in the present

systematical uncertainty of our analysis of the ghost propagator lattice data. However, the

– 8 –
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purpose of this paper is not to present a precise determination of the dimension-two gluon

condensate, but only to show that ghost and gluon propagators analysis strongly indicates

its existence. The precision could be improved by increasing the Monte-Carlo statistics

and by performing new simulations at larger β.

Another source of discrepancy are renormalon-type contributions that can also be of the

order of ∼ 1/q2. In fact, our OPE study does not include the analysis of such corrections.

However, the numerical equality (cf. table 3) of ∼ 1/q2 power corrections at fixed ΛMS

suggests that the ratio (3.1) is free of such corrections, in agreement with the common

belief that the renormalon ambiguities are compensated by condensate contributions. The

estimate for ΛMS obtained from this ratio is thus not affected by the renormalon-type

contributions. But the dependence of the value of these corrections on ΛMS speaks in

favour of the presence of renormalon-type contributions in Z3 and Z̃3 separately.

4. Conclusions

We have analysed non-perturbative low-order power corrections to the ghost propagator

in Landau gauge pure Yang-Mills theory using OPE. We found that these corrections are

the same as those for the gluon propagator at leading order. This means that their ratio

does not contain low-order power corrections (∼ 1/q2), and can be described (up to terms

of order ∼ 1/q4) by the perturbation theory. Fitting the ratio of propagators calculated on

the lattice we have extracted the ΛMS parameter using three- and four-loop perturbation

theory. The value ΛMS ≈ 270 MeV extracted from the ratio is quite small compared to

the one obtained in fits of gluon and ghost propagator (Λpert

MS
≈ 320 MeV, [8]) separately.

Indeed, ΛMS ≈ 270 MeV extracted from the ratio of ghost and gluon dressing functions

is closer to the value calculated in the past with power-corrections taken into account

(Λwith A2

MS
≈ 250 MeV, [3, 4]) than to the purely perturbative result . This study within

perturbation theory confirms the validity of our OPE analysis, and argues in favour of a

non-zero value of non-perturbative A2-condensate. We are not able at the moment to give

a precise value of the A2-condensate using this strategy. More lattice data and detailed

analysis of diverse systematic uncertainties are needed for this. But the method exposed

in this letter can in principle be used for this purpose, both in quenched and unquenched

cases.

A. Fitting Λ
MS

from separate data samples

In this appendix we present results for ΛQCD extracted by fitting the ratio
eZ3(p2)
Z3(p2)

using

two, three and four-loop perturbation theory. But we do not mix data samples obtained

in different lattice simulations. This allows to control the effects of several lattice artifacts

and of the uncertainty on the lattice spacing calculation on the resulting value of ΛQCD.

Fits have been performed in M̃OMc, M̃OMc0, M̃OMg renormalisation schemes (cf. tables 4–

9). In each case we chose the best fit from several fitting windows, having the smallest

χ2/d.o.f.; the statistical error corresponds to that fit. The systematic error is calculated

from different fit windows.
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V β Left, GeV Right,GeV aΛ
(2)
eZ3
Z3

,M̃OMg

conversion to Λ(2)MS, MeV χ2/d.o.f.

164 6.0 2.54 4.32 529(17)+4
−2 359(12)+2

−1 0.21

244 6.0 3.14 4.12 513(15)+16
−16 348(10)+11

−11 0.10

244 6.2 3.02 4.95 377(24)−11 358(22)−10 0.14

324 6.4 3.66 5.85 257(21)+1
−4 325(26)+3

−5 0.17

Table 4: Perturbative fit of
eZ3(p2)
Z3(p2) at 2 loops in M̃OMg scheme and further conversion to MS.

V β Left, GeV Right,GeV aΛ
(2)
eZ3
Z3

,M̃OMc

conversion to Λ(2)MS, MeV χ2/d.o.f.

164 6.0 2.15 4.12 445(6)−6 375(5)−5 0.14

244 6.0 3.14 4.12 398(53)+16
−1 335(45)+11

−1 0.10

244 6.2 3.02 4.95 313(19)−22 369(22)−26 0.13

324 6.4 3.66 5.85 215(17)+2
−2 337(26)+3

−3 0.17

Table 5: Perturbative fit of
eZ3(p2)
Z3(p2) at 2 loops in M̃OMc scheme and further conversion to MS.

V β Left, GeV Right,GeV aΛ
(2)
eZ3
Z3

,M̃OMc0

conversion to Λ(2)MS, MeV χ2/d.o.f.

164 6.0 1.97 4.11 400(6)−5 413(6)−5 0.15

244 6.0 3.13 4.12 354(49)+26 367(41)+27 0.11

244 6.2 3.02 4.95 280(17)+1
−12 367(24)+1

−17 0.11

324 6.4 3.66 5.85 190(16)+2
−3 366(30)+4

−6 0.16

Table 6: Perturbative fit of
eZ3(p2)
Z3(p2) at 2 loops in M̃OMc0 scheme and further conversion to MS.

V β Left, GeV Right,GeV aΛ
(3)
eZ3
Z3

,M̃OMc

conversion to Λ(3)MS, MeV χ2/d.o.f.

164 6.0 2.54 4.31 354(12)+5
−5 297(10)+4

−4 0.23

244 6.0 3.13 4.12 312(48)+30 261(40)+25 0.10

244 6.2 3.14 4.95 247(20)−22 289(23)−26 0.14

26 324 6.4 3.66 5.86 163(15)+2
−1 254(24)+3

−2 0.16

Table 7: Perturbative fit of
eZ3(p

2)
Z3(p2) at 3 loops in M̃OMc scheme and further conversion to MS.

One can see from these fits that the values for ΛMS are small at three and four loops

when fitting at energies ≥ 3GeV. All results are rather stable in this domain, and thus the

fitting of combined data from the simulations with different lattice spacings, presented in

the main part of the present letter, is safe and well defined.
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